详细信息
文献类型:期刊文献
中文题名:(h,■)-广义切导数与最优性条件
英文题名:(h,■)-Generalized Tangent Derivatives and Optimality Conditions
作者:盛宝怀[1];李银兴[2];刘三阳[3]
机构:[1]绍兴文理学院数学系;[2]宝鸡文理学院数学系;[3]西安电子科技大学应用数学系
年份:2007
卷号:30
期号:4
起止页码:592
中文期刊名:应用数学学报
外文期刊名:Acta Mathematicae Applicatae Sinica
收录:CSTPCD、、北大核心2004、CSCD2011_2012、北大核心、CSCD
基金:国家自然科学基金(10371024号);浙江省自然科学基金(Y604003号)资助项目.
语种:中文
中文关键词:Ben-Tal代数运算;(h,ψ)-凸函数;(h,ψ)-切锥;(h,ψ)-广义梯度;最优性条件
外文关键词:Ben-Tal algebraic operation; (h,ψ)-convex function; (h,ψ)-tangent cone;(h,ψ)-generalized gradient; optimality condition
中文摘要:借助于Ben-Tal广义代数运算定义了广义(h,■)-Clarke切锥,广义(h,■)-邻接切锥和广义(h,■)-伴随切锥,由此定义了广义(h,■)-Clarke方向导数、广义(h,■)-邻接方向导数、广义(h,■)-伴随方向导数及(h,■)-广义梯度,由此给出了具有(h,■)-凸性的的实值函数最优解的判别条件.文章是Ben-Tal代数在凸分析理论中的应用,所有结果和所用方法可以应用于多目标优化的研究.
外文摘要:The concepts of generalized (h,ψ)-Claxke tangent cone,generalized (h,ψ)-adiacent tangent cone and the generalized (h,ψ)-contingent tangent cone are introduced, from which the concepts of generalized (h,ψ)-Claxke tangent derivative, (h,ψ)-adjacent tangent derivative, (h,ψ)-contingent tangent derivative for real value function are proposed with the aid of Ben-Tal generalized algebraic operation and the properties for these derivatives axe discussed, with which the concept of (h,ψ)-generalized gradient is introduced. Finally, the necessary and sufficient optimality conditions for (h,ψ) convex function optimization is described. The paper is an application of the Ben-tal Algebraic in the convex analysis theory. The rusults obtained and the way used here can be applied to multiobjective optimization theory.
参考文献:
正在载入数据...