登录    注册    忘记密码

详细信息

一类非均匀分形插值函数的可微性     被引量:2

THE DIFFERENTIABILITY OF A CLASS OF FRACTAL INTERPOLATION FUNCTIONS

文献类型:期刊文献

中文题名:一类非均匀分形插值函数的可微性

英文题名:THE DIFFERENTIABILITY OF A CLASS OF FRACTAL INTERPOLATION FUNCTIONS

作者:柯云泉[1]

机构:[1]绍兴文理学院数学系

年份:2005

卷号:25

期号:3

起止页码:289

中文期刊名:数学杂志

外文期刊名:Journal of Mathematics

收录:CSTPCD、、北大核心2004、CSCD2011_2012、北大核心、CSCD

基金:浙江省重点扶植学科基金资助课题(1998494).

语种:中文

中文关键词:非等距插值点;迭代函数系;分形插值函数;可微性

外文关键词:non-isometric interpolation point; iterated function system; fractal interpolation function; differentiability

中文摘要:本文研究一类分形插值函数的可微性问题,通过构造一迭代函数系,利用迭代函数系的唯一吸引子,给出了一类分形插值函数,并获得了此类分形插值函数在[0,1]区间上几乎处处可微和在[0,1]区间上某一点不可微判定的充分条件,推广了文献[2]的结论。

外文摘要:In this paper we investigate the differentiability of a class of fractal interpolation functions. Based on the unique attractor of iterated function system which is constructed, we give a class of fractal interpolation functions and obtain the sufficient conditions of almost everywhere differentiability on interval[0,1] and non-differentiability at certain point on it. The results in paper [2] are extended.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心