登录    注册    忘记密码

详细信息

Error analysis of the kernel regularized regression based on refined convex losses and RKBSs  ( SCI-EXPANDED收录 EI收录)   被引量:6

文献类型:期刊文献

英文题名:Error analysis of the kernel regularized regression based on refined convex losses and RKBSs

作者:Sheng, Baohuai[1];Zuo, Lan[1]

机构:[1]Shaoxing Univ, Dept Appl Stat, Shaoxing 312000, Peoples R China

年份:2021

卷号:19

期号:05

外文期刊名:INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING

收录:SCI-EXPANDED(收录号:WOS:000707381400005)、、EI(收录号:20211810299138)、Scopus(收录号:2-s2.0-85104961717)、WOS

基金:This work is supported partially by the NSF (Project No. 61877039), the NSFC/RGC Joint Research Scheme (Project No. 12061160462 and N_CityU102/20) of China and the NSF (Project No. LY19F020013) of Zhejiang Province.

语种:英文

外文关键词:Reproducing kernel Banach space; kernel regularized regression; uniformly convex function; uniformly smooth function; uniformly convex space

外文摘要:In this paper, we bound the errors of kernel regularized regressions associating with 2-uniformly convex two-sided RKBSs and differentiable sigma(t) = vertical bar t vertical bar(p)/p (1 <= p <= 2) uniformly smooth losses. In particular, we give learning rates for the learning algorithm with loss V-p(t) = vertical bar t vertical bar(p)/p (1 < p <= 2). Also, we show a probability inequality and with which provide the error bounds for kernel regularized regression with loss V-q(t) = vertical bar t vertical bar(q)/q (q > 2). The discussions are comprehensive applications of the uniformly smooth function theory, the uniformly convex function theory and uniformly convex space theory.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心