登录    注册    忘记密码

详细信息

阶乘幂的差分算子及其逆     被引量:4

The Difference Operator of Factorial Power and Its Inverse

文献类型:期刊文献

中文题名:阶乘幂的差分算子及其逆

英文题名:The Difference Operator of Factorial Power and Its Inverse

作者:孙建新[1];胡金杰[1]

机构:[1]绍兴文理学院数学系,浙江绍兴312000

年份:2005

卷号:25

期号:7

起止页码:22

中文期刊名:绍兴文理学院学报:自然科学版

外文期刊名:Journal of Shaoxing College of Arts and Sciences

语种:中文

中文关键词:差分算子;乘幂;逆算子;积分算子;微分算子;对偶公式;多项式;定理;乘积

外文关键词:difference operator; inverse operator; Leibniz' formula;polynomial of factorial power

中文摘要:与微分算子及其逆算子积分算子作比较,讨论了差分算子及其逆算子(和分).主要结果为关于乘积的k-阶差分的Leibniz公式(定理6.3)以及乘积的k-阶和分的对偶公式(定理6.4)。显然,差分算子及其逆算子是阶乘幂多项式的方便工具。

外文摘要:In comparison with the differential operator and its inverse - integral operator, the difference operator and its inverse (sum operator) are discussed in this paper. The main results are the Leibniz' formula of difference of k - order of product( Th. 6.3 ) and its dual form - the formula of sum of k - order of product ( Th . 6.4) . Clearly, the difference operator or sum operator is the convenient tool for the polynomial of factorial powers.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心