详细信息
文献类型:期刊文献
中文题名:阶乘幂的差分算子及其逆
英文题名:The Difference Operator of Factorial Power and Its Inverse
作者:孙建新[1];胡金杰[1]
机构:[1]绍兴文理学院数学系,浙江绍兴312000
年份:2005
卷号:25
期号:7
起止页码:22
中文期刊名:绍兴文理学院学报:自然科学版
外文期刊名:Journal of Shaoxing College of Arts and Sciences
语种:中文
中文关键词:差分算子;乘幂;逆算子;积分算子;微分算子;对偶公式;多项式;定理;乘积
外文关键词:difference operator; inverse operator; Leibniz' formula;polynomial of factorial power
中文摘要:与微分算子及其逆算子积分算子作比较,讨论了差分算子及其逆算子(和分).主要结果为关于乘积的k-阶差分的Leibniz公式(定理6.3)以及乘积的k-阶和分的对偶公式(定理6.4)。显然,差分算子及其逆算子是阶乘幂多项式的方便工具。
外文摘要:In comparison with the differential operator and its inverse - integral operator, the difference operator and its inverse (sum operator) are discussed in this paper. The main results are the Leibniz' formula of difference of k - order of product( Th. 6.3 ) and its dual form - the formula of sum of k - order of product ( Th . 6.4) . Clearly, the difference operator or sum operator is the convenient tool for the polynomial of factorial powers.
参考文献:
正在载入数据...