详细信息
一类随机高阶变时滞神经网络的指数稳定性
Exponential Stability Analysis of a Class Stochastic High-order Neural Networks with Time-varying Delays
文献类型:期刊文献
中文题名:一类随机高阶变时滞神经网络的指数稳定性
英文题名:Exponential Stability Analysis of a Class Stochastic High-order Neural Networks with Time-varying Delays
作者:蒋望东[1];刘伟[1];章月红[1]
机构:[1]绍兴文理学院元培学院,浙江绍兴312000
年份:2020
卷号:50
期号:12
起止页码:182
中文期刊名:数学的实践与认识
外文期刊名:Mathematics in Practice and Theory
收录:CSTPCD、、北大核心2017、北大核心
基金:教育部产学合作协同育人项目(201801123017);浙江省高等教育教学改革研究项目(JG20160261);绍兴市高等教育教学改革研究项目(SXSJG201833)。
语种:中文
中文关键词:随机高阶;变时滞神经网络;Brouwer不动点原理;Schwarz积分不等式;指数稳定性
外文关键词:stochastic high-order;neural networks with time-varying delays;Brouwer’s fixed-point theorem;schwarz integral inequality;exponential stability
中文摘要:对于一类随机高阶变时滞神经网络,应用Brouwer不动点原理和随机分析理论知识,利用Schwarz积分不等式和递推归纳技巧,研究高阶变时滞神经网络在随机扰动下的稳定性,给出其指数稳定判定的充分性条件.最后通过数值例子说明所得结果的有效性.
外文摘要:For a class high-order neural networks with time-varying delays,using Brouwer’s fixed-point theorem,stochastic analysis theorem,Schwarz integral inequality and recursive induction techniques to research the stability of a class high-order neural networks with stochastic disturbance term and time-varying delays,the general sufficient conditions for exponential stability are established.Finally,a numerical example is given to illustrate the validity of the results obtained.
参考文献:
正在载入数据...