详细信息
文献类型:期刊文献
中文题名:Banach空间中线性算子的度量右逆
英文题名:THE METRIC RIGHT INVERSE OF LINEAR OPERATOR IN BANACH SPACE
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:2008
卷号:28
期号:6
起止页码:747
中文期刊名:系统科学与数学
外文期刊名:Journal of Systems Science and Mathematical Sciences
收录:CSTPCD、、北大核心2004、CSCD2011_2012、北大核心、CSCD
基金:国家自然科学基金(10271025);浙江省自然科学基金(Y606717);浙江省教育厅重点科研计划资助项目
语种:中文
中文关键词:度量右逆;广义正交分解;Chebyshev子空间;正规对偶映射
外文关键词:Metric right inverse, generalized orthogonal decomposition, Chebyshev subspace, normalized duality mapping
中文摘要:对无自反性假定的Banach空间,运用Banach空间几何方法,得到了闭稠定满射的线性算子(可以无界)的度量右逆的表达式,并给出了该度量右逆的存在性和连续性的充要条件.多方面拓广了Aubin J P和王玉文等人的相应结果.
外文摘要:For Banach space without reflexive assumption, by means of the geometric method of Banach space, the representation of the metric right inverse of closed linear surjective operator with dense domain (may be unbounded) is obtained, and the necessary and sufficient conditions for existence, continuity of the metric right inverse of linear operator are given. The obtained results extend and improve the corresponding results obtained by Aubin J P, Wang Yu-wen and others.
参考文献:
正在载入数据...