详细信息
分数阶变时滞Cohen-Grossberg型BAM神经网络全局Mittag-Leffler稳定
Global Mittag-Leffler Stability of Fractional-order Cohen-Grossberg BAM Neural Networks with Time-varying Delays
文献类型:期刊文献
中文题名:分数阶变时滞Cohen-Grossberg型BAM神经网络全局Mittag-Leffler稳定
英文题名:Global Mittag-Leffler Stability of Fractional-order Cohen-Grossberg BAM Neural Networks with Time-varying Delays
作者:刘伟[1];蒋望东[1];章月红[1]
机构:[1]绍兴文理学院元培学院
年份:2019
卷号:49
期号:20
起止页码:303
中文期刊名:数学的实践与认识
外文期刊名:Mathematics in Practice and Theory
收录:CSTPCD、、北大核心2017、北大核心
基金:教育部产学合作协同育人项目(201801123017);浙江省高等教育教学改革研究项目(JG20160261);绍兴市高等教育教学改革研究项目(SXSJG201833)
语种:中文
中文关键词:分数阶;Cohen-Grossberg型BAM神经网络;微分中值定理;全局Mittag-Leffler稳定
外文关键词:fractional-order;Cohen-Grossberg type BAM neural networks;differential mean value theorem;global Mittag-Leffler stability
中文摘要:主要研究分数阶变时滞Cohen-Grossberg型BAM神经网络,利用分数阶微积分有关性质,定义Mittag-leffler函数和对时间区间的有效划分,借助微分中值定理和一些分析技巧,给出了判定其系统解全局Mittag-Leffler稳定性充分条件.最后,给出数值例子以验证理论结果的有效性.
外文摘要:This paper mainly studies fractional-order Cohen-Grossberg BAM neural networks with time-varying delays.Using properties of fractional-order calculus,definition of the Mittag-leffler function,effective division of time intervals,differential mean value theorem and some analytical techniques,sufficient conditions is given to ensure global Mittag-Leffler stability of such fractional-order neural networks.Finally,numerical examples are given to verify the validity of the theoretical results.
参考文献:
正在载入数据...