登录    注册    忘记密码

详细信息

分数阶时滞Cohen-Grossberg型BAM神经网络S-渐近ω-周期解     被引量:1

Global S-asymptotic ω-periodic solutions for fractional Cohen-Grossberg BAM neural networks with delay

文献类型:期刊文献

中文题名:分数阶时滞Cohen-Grossberg型BAM神经网络S-渐近ω-周期解

英文题名:Global S-asymptotic ω-periodic solutions for fractional Cohen-Grossberg BAM neural networks with delay

作者:蒋望东[1];章月红[1];刘伟[1]

机构:[1]绍兴文理学院元培学院数学教研部,浙江绍兴312000

年份:2020

卷号:35

期号:4

起止页码:455

中文期刊名:高校应用数学学报:A辑

收录:CSTPCD、、北大核心2017、北大核心、PubMed

基金:浙江省高等教育教学改革研究项目(JG20160261);教育部产学合作协同育人项目(201801123017);绍兴市高等教育教学改革研究项目(SXSJG201833)。

语种:中文

中文关键词:分数阶;Cohen-Grossberg型BAM神经网络;有界性;S-渐近ω-周期;全局渐近ω-周期解

外文关键词:fractional order;Cohen-Grossberg BAM neural networks;boundedness;global s-asymptoticω-period

中文摘要:主要研究分数阶时滞Cohen-Grossberg型BAM神经网络的有界性和周期性问题.利用分数阶微积分性质,借助于微分中值定理和Ascoli-Arzela定理,给出了判定系统解的有界性,S-渐近ω-周期和全局渐近ω-周期解的充分条件.最后通过数值模拟例子验证所得到理论结果的有效性.

外文摘要:This paper mainly studies the boundedness and periodicity of fractional Cohen Grossberg type BAM neural network with delay.By using the properties of fractional calculus,differential mean value theorem and Ascoli-Arzela theorem,the sufficient conditions for determining the boundedness of system solution and global S-asymptoticωperiodic solution are given.Finally,the validity of the theoretical results is verified by numerical simulation examples.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心