详细信息
随机Cohen-Grossberg-type BAM神经网络的均方指数稳定性 被引量:2
Exponential Stability in Mean Square for a Stochastic Cohen-Grossberg-type BAM Neural Network
文献类型:期刊文献
中文题名:随机Cohen-Grossberg-type BAM神经网络的均方指数稳定性
英文题名:Exponential Stability in Mean Square for a Stochastic Cohen-Grossberg-type BAM Neural Network
作者:魏雪蕊[1];柯云泉[1]
机构:[1]绍兴文理学院数理信息学院
年份:2012
卷号:24
期号:17
起止页码:199
中文期刊名:数学的实践与认识
外文期刊名:Mathematics in Practice and Theory
收录:CSTPCD、、北大核心2011、CSCD_E2011_2012、北大核心、CSCD
基金:浙江省自然科学基金(Y6100096;LQ12F02007);绍兴文理学院重点资助项目(2011LG1001)
语种:中文
中文关键词:随机Cohen-Grossberg-type;BAM神经网络;Ito公式;Lyapunov函数;均;方指数稳定
外文关键词:stochastic cohen-grossberg-type BAM neural networks; Ito formula; lyapunovfunction; mean square exponential stability
中文摘要:通过构造Lyapunov函数,利用随机微分的Ito公式,研究了一类含有时滞的随机Cohen-Grossberg-type BAM神经网络的均方指数稳定性,并给出判定的条件,最后举例子说明结果的正确性.
外文摘要:The exponential stability in mean square for a stochastic Cohen-Grossberg-type BAM neural network is discussed by constructing suitable Lyapunov function and using the Ito formula. The general sufficient conditions for the exponential stability in mean square are estabished. Finally an illustrative example is given to show the effectiveness of our results.
参考文献:
正在载入数据...