详细信息
增生算子迭代法与收缩半群强收敛的充要条件 被引量:1
A NECESSARY AND SUFFICIENT CONDITION FOR STRONG CONVERGENCE OF ITERATIVE METHODS FOR ACCRETIVE OPERATORS AND OF CONTRACTION SEMIGROUPS
文献类型:期刊文献
中文题名:增生算子迭代法与收缩半群强收敛的充要条件
英文题名:A NECESSARY AND SUFFICIENT CONDITION FOR STRONG CONVERGENCE OF ITERATIVE METHODS FOR ACCRETIVE OPERATORS AND OF CONTRACTION SEMIGROUPS
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:2000
卷号:15A
期号:4
起止页码:433
中文期刊名:高校应用数学学报:A辑
收录:CSTPCD、、北大核心1996、CSCD2011_2012、北大核心、CSCD
基金:浙江省重点扶植学科基金
语种:中文
中文关键词:增生算子;预解式迭代法;非线性收缩半群;强收敛;充要条件
外文关键词:Resolvent Iterative Methods for Accretive Operators, Nonlinear Contraction Semigroups, Strong Convergence, Necessary and Sufficient Condition
中文摘要:在一定条件下 ,证明了增生算子的预解式迭代法强收敛于零点的充要条件 ,以及非线性收缩半群强收敛于平衡点的充要条件 .这些与蒋耀林等人 (1 994年 )所获得的相应弱收敛充要条件相对应 .
外文摘要:A necessary and sufficient condition is presented which ensures the strong convergence of the resolvent iterations to accretive opeartors and of the contraction semigroups in Banach spaces. The conclusion can be regarded as a weakly topological version of the theorem established by Jiang Yaolin et al. (1994).
参考文献:
正在载入数据...