详细信息
任意Banach空间中线性算子的Moore-Penrose度量广义逆 被引量:3
Moore-Penrose Metric Generalized Inverse of Linear Opeartor in Arbitrary Banach Space
文献类型:期刊文献
中文题名:任意Banach空间中线性算子的Moore-Penrose度量广义逆
英文题名:Moore-Penrose Metric Generalized Inverse of Linear Opeartor in Arbitrary Banach Space
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:2006
卷号:49
期号:6
起止页码:1247
中文期刊名:数学学报:中文版
收录:CSTPCD、、北大核心2004、Scopus、CSCD2011_2012、北大核心、CSCD
基金:国家自然科学基金(10271025);浙江省自然科学基金(102002)
语种:中文
中文关键词:线性算子;Moore-Pcnrose度量广义逆;广义正交分解
外文关键词:linear operator; Moore-Penrose metric generalized inverse; generalizedorthogonal decomposition
中文摘要:在无空间严格凸的几何假定下,利用Banach空间几何方法给出了任意Banach空间中线性算子T的Moore-Penrose度量广义逆T^+的存在性、唯一性、极小性和线性性的充要条件,同时还讨论了T^+的一些性质,这些本质地将文献[8]的最近结果从严格凸Banach空间拓广至任意Banach空间.
外文摘要:Without geometry assumption on strictly convex space, by means of methods of geometry of Banach space, the necessary and sufficient conditions for the existence, uniqueness, minimum property and linearity of the Moore-Penrose metric generalized inverse T^+ of linear operator T are given, and some properties of T^+ are investigated. These indeed extend and improve the corresponding recent results obtained by [8] from strictly convex Banach space to arbitrary Banach space.
参考文献:
正在载入数据...