详细信息
文献类型:期刊文献
中文题名:赋范线性空间中同时远达点的唯一性
英文题名:UNIQUENESS OF SIMULTANEOUS FARTHEST POINTS IN NORMED LINEAR SPACES
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:1997
卷号:19
期号:4
起止页码:357
中文期刊名:高等学校计算数学学报
外文期刊名:Numerical Mathematies A Journal of Chinese Universities
收录:CSTPCD、、北大核心1996、CSCD2011_2012、北大核心、CSCD
语种:中文
中文关键词:赋范线性空间;同时远达点;唯一性;逼近
外文关键词:Uniqueness of simutaneou farthest points. characterization of strict convexity of space;uniformly convex Banach space;Hausdorff metric.
中文摘要:1 引言 设X为一实赋范线性空间,给定X中的子集G和有界子集K,令(?)和C分别表示X的所有非空有界子集与相对紧子集的全体,对A∈B,记 若x0∈K满足sup||a-x0||=Fk(A),则称x0是A关于K的同时远达点,A关于K的同时远达点的全体记为QK(A)。
外文摘要:In this paper, the uniqueness problem of simutaneous farthest points in normed linear space X is investigated. We give some uniqueness theorems to simultaneous farthest points. Meanwhile, a new characterization of strict convexity of space is obtained by the uniqueness of simultaneous farthest points with respect to two arbitrary disjoint bounded closed balls.
参考文献:
正在载入数据...