详细信息
空间形式S^n+p(c)中法丛平坦的常数量曲率子流形
Submanifolds with Flat Normal Bundle and Constant Scalar Curvature in Space Form S~(n+p) (c)
文献类型:期刊文献
中文题名:空间形式S^n+p(c)中法丛平坦的常数量曲率子流形
英文题名:Submanifolds with Flat Normal Bundle and Constant Scalar Curvature in Space Form S~(n+p) (c)
作者:宣满友[1]
机构:[1]绍兴文理学院数学系,浙江绍兴312000
年份:2004
卷号:24
期号:10
起止页码:8
中文期刊名:绍兴文理学院学报:自然科学版
外文期刊名:Journal of Shaoxing College of Arts and Sciences
收录:国家哲学社会科学学术期刊数据库
基金:国家自然科学基金(10471122)浙江省自然科学基金(102033)
语种:中文
中文关键词:常数量曲率;法丛平坦;紧致子流形;刚性定理;平均曲率向量;全脐子流形;截面曲率;空间形式;平行;标准
外文关键词:space form;;flat normal bundle;;constant scalar curvature;;parallel normalized mean curvature;;totally umbilical submanifold
中文摘要:得到空间形式S^n+p(c)中法丛平坦的常数量曲率子流形的一个刚性定理:设M^n(n≥3)是空间形式S^n+p(c)中标准平均曲率向量平行的紧致子流形和M^n的标准数量曲率R为常数.若法丛N(M^n)平坦且(1)R-c≥0,(2)M^n的截面曲率K>0,则M^n是S^n+p(c)中的全脐子流形。
外文摘要:In this paper the author obtains a rigid result for submanifolds with flat normal bundle and constant scalar curvature in the space form S~(n+p)(c) :Let M~n( n ≥ 3) be a submanifold with parallel normalized mean curvature vector field immersed in the space form S~(n+P)(c) .Suppose that the normalized scalar curvature R is constant and R - c ≥ 0 . If the normal bundle N(M~n) is fiat and K > 0 ,then M~n is totally umbilical in S~(n+p)(c) .
参考文献:
正在载入数据...