详细信息
强(A,η)-增生算子及其在变分包含中的应用(英文)
Strongly(A,η)-accretive Operators and the Applications to Variational Inclusions
文献类型:期刊文献
中文题名:强(A,η)-增生算子及其在变分包含中的应用(英文)
英文题名:Strongly(A,η)-accretive Operators and the Applications to Variational Inclusions
作者:王亚琴[1]
机构:[1]绍兴文理学院数学系
年份:2011
卷号:24
期号:3
起止页码:624
中文期刊名:应用数学
外文期刊名:Mathematica Applicata
收录:CSTPCD、、CSCD2011_2012、北大核心2008、北大核心、CSCD
基金:Supported by the Research Project of Shaoxing University(09LG1002)
语种:中文
中文关键词:强(A;,η)-增生算子;变分包含;广义预解算子;迭代算法
外文关键词:Strongly (A, η) -accretive operator; Variational inclusion ; Generalized resolvent operator; Iterative algorithm
中文摘要:本文引入一类广义增生算子——强(A,η)-增生算子.定义强(A,η)-增生算子的广义预解算子并证明它的Lipschitz连续性,进一步证明含强(A,η)-增生算子的变分包含的一些新的迭代算法的收敛性.所得结果改进和推广了许多文献的相应结果.
外文摘要:In this paper, we introduce a class of generalized accretive operators strongly (A, η) - accretive operators. The generalized resolvent operator associated with a strongly (A,η)-accretive operator is defined and its Lipschitz continuity is proved. Furthermore, we prove the convergence of some new iterative algorithms for variational inclusions involving strongly (A, η) -accretive operators. The results obtained generalize and improve the recent ones announced by many others.
参考文献:
正在载入数据...