详细信息
k-次增生型变分包含解的迭代构造
On the iterative construction of solutions to variational inclusions with k-subaccretive type mappings
文献类型:期刊文献
中文题名:k-次增生型变分包含解的迭代构造
英文题名:On the iterative construction of solutions to variational inclusions with k-subaccretive type mappings
作者:凌海生[1];倪仁兴[2]
机构:[1]浙江邮电职业技术学院计算机系;[2]绍兴文理学院数学系
年份:2010
卷号:37
期号:3
起止页码:257
中文期刊名:浙江大学学报:理学版
收录:CSTPCD、、Scopus、CSCD2011_2012、北大核心2008、北大核心、CSCD
基金:国家自然科学基金资助项目(10971194);浙江省自然科学基金资助项目(Y606717)
语种:中文
中文关键词:变分包含;m-增生映像;k-次增生映像;具混合误差的Ishikawa迭代序列
外文关键词:variational inclusions; m-accretive mapping; k-subaccretive mapping; Ishikawa iterative sequence with mixed errors
中文摘要:研究一般Banach空间中一类k-次增生型变分包含问题解的存在性及其具混合误差的Ishikawa迭代程序的收敛性问题,给出此迭代程序强收敛于变分包含问题唯一解的充要条件,建立迭代系数{nα}与{nβ}的极限limn→∞nα和limn→∞βn未必为零时迭代程序强收敛于Lipschitz连续的k-次增生型变分包含解的误差估计式.它们是一些已有结果的本质改进和推广.
外文摘要:The research is to investigate the existence of solutions and convergence of Ishikawa iterative process with mixed errors for a class of variational inclusions problems with k-subaccretive type mappings in arbitrary Banach spaces,the necessary and sufficient conditions are given that process strongly converge to the uniquess solutions of variational inclusion problem,estimations of error are established for iterative process strongly converge to solutions to variational inclusion with Lipschitz k-subaccretive type mappings when limn→∞ αn and limn→∞ βn may not be zero.The results extend and improve the corresponding results obtained recently by several authors.
参考文献:
正在载入数据...