详细信息
负压条件下氢气的爆炸极限及最大爆炸压力研究
Investigation of explosion limits and maximum explosion pressuresof hydrogen under negative pressure conditions
文献类型:期刊文献
中文题名:负压条件下氢气的爆炸极限及最大爆炸压力研究
英文题名:Investigation of explosion limits and maximum explosion pressuresof hydrogen under negative pressure conditions
作者:王旭明[1];潘玉蕊[1];张秋玲[1];许映杰[2];胡鑫[1]
机构:[1]浙江新和成股份有限公司安环研究所,浙江绍兴312000;[2]绍兴文理学院化学化工学院,浙江绍兴312000
年份:2025
卷号:25
期号:5
起止页码:1718
中文期刊名:安全与环境学报
外文期刊名:Journal of Safety and Environment
收录:北大核心2023、、北大核心
基金:浙江省“十四五”省级大学生校外实践教育基地建设项目(浙教办函[2023]41号)。
语种:中文
中文关键词:安全工程;氢气;负压;临界爆炸压力;爆炸极限;最大爆炸压力;爆炸升压比
外文关键词:safety engineering;hydrogen;negative pressure;critical explosion pressure;explosion limit;maximum explosion pressure;explosion pressure rise ratio
中文摘要:氢气在实际应用中存在着许多负压场景,确定负压工况下的燃爆参数是对氢气进行科学评估和有效防控的首要前提。采用高精度配气及爆炸压力采集系统研究氢气在负压场景下的燃爆特性,明确氢气的爆炸上限、爆炸下限、临界爆炸压力、最大爆炸压力、最大爆炸升压比等燃爆参数;并通过Python中的Matplotlib等软件库对试验数据进行拟合,分析压力对氢气燃爆参数的影响。结果表明:在室温、空气条件下,初始压力从100 k Pa降至3.5 k Pa的过程中,爆炸范围不断缩小,特别是从初始压力低于10 k Pa开始,爆炸范围缩小速度明显增加,该现象与分子间距受压力影响的变化趋势存在强关联;当初始压力低至3.72 k Pa时,爆炸上、下限重合在12.58%体积分数的位置,该压力称为临界爆炸压力,低于该压力时体系将失去爆炸性;一般认为最大爆炸压力通常在理论当量体积分数29.6%附近取得,试验发现此规律仅适用于初始压力大≥5 k Pa的场景,当初始压力<5 k Pa时,理论当量体积分数将随着压力的减小而发生改变,逐渐偏离至体积分数10%~15%;最大爆炸升压比会随着初始压力的减小而降低,从常规的7.30降低至4.63,特别是在初始压力<5 k Pa的体系中,该比值大幅降低。
外文摘要:In practical applications of hydrogen,various negative pressure scenarios exist.Identifying the explosion parameters of hydrogen under these negative pressure conditions is essential for conducting scientific risk assessments and implementing effective prevention measures.A high-precision gas distribution and explosion pressure acquisition system was utilized to conduct explosion tests under varying initial pressures and hydrogen volume fractions.The results were analyzed using software libraries,such as Matplotlib in Python,to create curves that illustrate the relationship between explosion limits and initial pressure,explosion pressure and hydrogen volume fraction at different initial pressures,and the explosion pressure rise ratio.The variations in explosion parameters under negative pressure conditions were analyzed from the perspective of molecular spacing.The results indicate that,at room temperature and in an air environment,reducing the initial pressure from 100 to 3.5 kPa leads to a progressive narrowing of the explosion range.Notably,when the initial pressure drops below 10 kPa,the rate of narrowing accelerates significantly.This phenomenon is closely correlated with changes in molecular spacing influenced by pressure,with 10 kPa serving as a critical inflection point for both trends.At an initial pressure of 3.72 kPa,referred to as the critical explosion pressure,the upper and lower explosion limits converge at a hydrogen volume fraction of 12.58%.Below this pressure,the system loses its explosive potential.It is widely accepted that the maximum explosion pressure is typically reached near the stoichiometric concentration of 29.6%(volume fraction).However,experimental results indicate that this principle applies only when the initial pressure is greater than or equal to 5 kPa.When the initial pressure falls below 5 kPa,the stoichiometric concentration shifts with decreasing pressure,moving toward a range of 10%to 15%.Furthermore,the maximum explosion pressure rise ratio decreases from a conventional value of 7.30 to 4.63,especially in systems where the initial pressure is below 5 kPa,resulting in a significant reduction in this ratio.
参考文献:
正在载入数据...