详细信息
文献类型:期刊文献
中文题名:一类BAM随机神经网络的稳定性
英文题名:Stability of a Class BAM Stochastic Neural Networks
作者:缪春芳[1];柯云泉[1]
机构:[1]绍兴文理学院数学系
年份:2008
卷号:23
期号:4
起止页码:623
中文期刊名:生物数学学报
外文期刊名:Journal of Biomathematics
收录:北大核心2004、CSCD2011_2012、北大核心、CSCD
基金:浙江省自然科学基金项目(6040030)
语种:中文
中文关键词:BAM随机神经网络;Schwarz积分不等式;Ito积分性质;全局稳定性;指数稳;定性
外文关键词:BAM stochastic neural networks; Schwarz integral inequality; Ito integral property; Global sability; Exponential stability
中文摘要:对于一类双向联想记忆(BAM)随机神经网络,研究其全局稳定性和指数稳定性,利用Schwarz积分不等式和It积分性质,给出其稳定性判定的充分性条件.
外文摘要:To stochastic neural networks of a class bi-directional associative memory, we investigat their global sability and exponential stability. The general sufficient conditions for global sability and exponential stability of a class BAM stochastic neural networks are established by using the schwarz integral inequality and Ito integral property.
参考文献:
正在载入数据...