详细信息
广义最速下降逼近拟增生算子的零点
A Generalized Steepest Descent Approximation for the Zeros of Quasi-accretive Operators
文献类型:期刊文献
中文题名:广义最速下降逼近拟增生算子的零点
英文题名:A Generalized Steepest Descent Approximation for the Zeros of Quasi-accretive Operators
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:2006
卷号:26
期号:2
起止页码:297
中文期刊名:数学物理学报:A辑
收录:CSTPCD、、北大核心2004、CSCD2011_2012、北大核心、CSCD
基金:国家自然科学基金(10271025);浙江省自然科学基金(102002)资助
语种:中文
中文关键词:拟增生算子;φ-强拟增生算子;拟伪压缩算子;一致光滑空间;广义最速下降逼近;非线性方程的零点
外文关键词:Quasi-accretive operators; φ-strongly quasi-accretive operators; Quasi-pseudocontractive operators; Generalized steepest descent approximation; Zeros of nonlinear operatorsequation.
中文摘要:证明了广义最速下降逼近强收敛于定义在一致光滑实Banach空间的真子集上的有界拟增生算子的零点的一充要条件,几个相关的结果处理含-强拟增生算子方程解或拟伪压缩映射不动点的强收敛性.所得的这些结果推广和统一了许多前人的近期相应结果.
外文摘要:A necessary and sufficient condition is proved for a generalized steepest descent approximation to converge to the zeros of bounded quasi-accretive operators defined on proper subsets of uniformly smooth real Banach space. Some related results deal with the strong con- vergence of the scheme to a solution of equations involving φ-strongly quasi-accretive operators and fixed points of quasi-pseudocontractive map. These results extend and unify the recent corresponding ones by many authors.
参考文献:
正在载入数据...