详细信息
一类新的含(H,η)-增生算子的变分包含组解的迭代逼近
Iterative Approximation of Solutions for a New Class of Variational Inclusions Involving H,η-accretive Operators
文献类型:期刊文献
中文题名:一类新的含(H,η)-增生算子的变分包含组解的迭代逼近
英文题名:Iterative Approximation of Solutions for a New Class of Variational Inclusions Involving H,η-accretive Operators
作者:王亚琴[1];吴斌[1]
机构:[1]绍兴文理学院数学系
年份:2010
卷号:30
期号:9
起止页码:12
中文期刊名:绍兴文理学院学报
收录:国家哲学社会科学学术期刊数据库
语种:中文
中文关键词:q-一致光滑Banach空间;(H,η)-增生算子;集值变分包含组;迭代算法;预解算子
外文关键词:q- uniformly smooth Banach space; (H,η) -accretive operator; multi -valued variational inclusion ;iterative algorithm; resolvent operator
中文摘要:在q-一致光滑Banach空间中引入和研究了一类新的含(H,η)-增生算子的集值变分包含组问题.利用所定义的(H,η)-增生算子的预解算子,给出了此类变分包含组的迭代算法,并证明了由该算法生成的迭代序列的强收敛性.所得结果改进和推广了最近一些文献中的相应结果.
外文摘要:A new class of multi- valued variational inclusions involving (H,η) -accretive operators in q -uni- formly smooth Banach spaces is introduced and discussed. Using the resolvent operator associated with (H,η) - accretive operators, the paper attempts to construct an iterative algorithm for this system and prove the strong convergence of this iterative sequence generated by the algorithm. The result presented in this paper improves and extends the recent findings announced by many others.
参考文献:
正在载入数据...