详细信息
迭代程序强收敛于广义拟变分包含解的表征
On Characterizations of the Strong Convergence of the Iterative Process to Solutions of Generalized Quasi-variational Inclusions
文献类型:期刊文献
中文题名:迭代程序强收敛于广义拟变分包含解的表征
英文题名:On Characterizations of the Strong Convergence of the Iterative Process to Solutions of Generalized Quasi-variational Inclusions
作者:倪仁兴[1];冯先智[2]
机构:[1]绍兴文理学院数学系;[2]台州学院数学系
年份:2008
卷号:29
期号:4
起止页码:289
中文期刊名:宁夏大学学报:自然科学版
收录:CSTPCD、、北大核心2004、北大核心
基金:国家自然科学基金资助项目(10271025);浙江省自然科学基金资助项目(Y606717);浙江省教育厅科研计划重点资助项目(20061154)
语种:中文
中文关键词:广义拟变分包含;k-次增生映射;φ-强增生算子;特征定理
外文关键词:generalized quasi-variational inclusion; k-subaccretive mapping;φ-strongly accretive mapping;characterization theorem
中文摘要:研究了一致光滑实Banach空间中含k-次增生映射和φ-强增生映射的一类无紧性条件的广义拟变分包含解的逼近问题,给出了具混合误差的Ishikawa迭代序列强收敛到广义拟变分包含解的特征定理,所得结果改进和推广了近期许多相关结果.
外文摘要:The approximation problem of solutions to a class of generalized quasi-variational inclusions including k-subaccretive mapping and φ-strongly accretive mapping without compactness conditions is investigated. The characterization theorems that the Ishikawa iterative sequences with mixed errors convergences strongly to solutions of quasi-variational inclusions are given. These results improve and generalize many recent known corresponding results.
参考文献:
正在载入数据...