登录    注册    忘记密码

详细信息

迭代程序强收敛于广义拟变分包含解的表征    

On Characterizations of the Strong Convergence of the Iterative Process to Solutions of Generalized Quasi-variational Inclusions

文献类型:期刊文献

中文题名:迭代程序强收敛于广义拟变分包含解的表征

英文题名:On Characterizations of the Strong Convergence of the Iterative Process to Solutions of Generalized Quasi-variational Inclusions

作者:倪仁兴[1];冯先智[2]

机构:[1]绍兴文理学院数学系;[2]台州学院数学系

年份:2008

卷号:29

期号:4

起止页码:289

中文期刊名:宁夏大学学报:自然科学版

收录:CSTPCD、、北大核心2004、北大核心

基金:国家自然科学基金资助项目(10271025);浙江省自然科学基金资助项目(Y606717);浙江省教育厅科研计划重点资助项目(20061154)

语种:中文

中文关键词:广义拟变分包含;k-次增生映射;φ-强增生算子;特征定理

外文关键词:generalized quasi-variational inclusion; k-subaccretive mapping;φ-strongly accretive mapping;characterization theorem

中文摘要:研究了一致光滑实Banach空间中含k-次增生映射和φ-强增生映射的一类无紧性条件的广义拟变分包含解的逼近问题,给出了具混合误差的Ishikawa迭代序列强收敛到广义拟变分包含解的特征定理,所得结果改进和推广了近期许多相关结果.

外文摘要:The approximation problem of solutions to a class of generalized quasi-variational inclusions including k-subaccretive mapping and φ-strongly accretive mapping without compactness conditions is investigated. The characterization theorems that the Ishikawa iterative sequences with mixed errors convergences strongly to solutions of quasi-variational inclusions are given. These results improve and generalize many recent known corresponding results.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心