登录    注册    忘记密码

详细信息

一个幂指不等式猜想的部分肯定解决    

Partly Affirmative Answer to a Power Exponent Inequality Conjecture

文献类型:期刊文献

中文题名:一个幂指不等式猜想的部分肯定解决

英文题名:Partly Affirmative Answer to a Power Exponent Inequality Conjecture

作者:刘燕红[1];成刚[1];周淑情[1];许玲娜[1];徐耀[1];倪仁兴[1]

机构:[1]绍兴文理学院数学系

年份:2008

卷号:28

期号:8

起止页码:27

中文期刊名:绍兴文理学院学报

收录:国家哲学社会科学学术期刊数据库

基金:绍兴文理学院校级教改立项资助项目(070204);浙江省教育厅科研计划重点资助项目(20061154);浙江省自然科学基金资助项目(Y606717)

语种:中文

中文关键词:猜想;排列;幂指不等式;部分肯定回答

外文关键词:conjecture; arrangement ; power exponent inequality ; partly affirmative answer

中文摘要:倪仁兴和张森国于2002年提出了下面一个幂指不等式猜想:对满足0

外文摘要:In 2002, Ni Renxing and Zhang Senguo put forward the following conjecture that power exponent inequality n∑k=1akaa-k+1≤a∑j=1akj^amj≤a∑k=1ak^ak is true when {ak}satisfies0〈a1≤a2≤…an where{k1,k2,…,kn}and{m1,m2,…,mn} are the two arbitrary arrangements of { 1,2,…… n } .The conjecture had been collected in professor Kuang Jichang's Common Use Inequalities Commonly Used published in 2004, and it was also be set the 25th one between 152 conjectures on inequality that have not been solved. So the conjecture is very significant and important. The right side inequality of this conjecture had been proved to be true , thereby we can partly affirmative answer the conjecture.

参考文献:

正在载入数据...

版权所有©绍兴文理学院 重庆维普资讯有限公司 渝B2-20050021-8
渝公网安备 50019002500408号 违法和不良信息举报中心