详细信息
拟增生算子方程的广义最速下降逼近的收敛性
Convergence of Generalized Steepest Descent Approximation to Quasl-accretive Operators Equations
文献类型:期刊文献
中文题名:拟增生算子方程的广义最速下降逼近的收敛性
英文题名:Convergence of Generalized Steepest Descent Approximation to Quasl-accretive Operators Equations
作者:倪仁兴[1]
机构:[1]绍兴文理学院数学系
年份:2009
期号:1
起止页码:143
中文期刊名:应用数学学报
外文期刊名:Acta Mathematicae Applicatae Sinica
收录:CSTPCD、、CSCD2011_2012、北大核心2008、北大核心、CSCD
基金:国家自然科学基金(10271025);浙江省自然科学基金(Y606717)等资助项目.
语种:中文
中文关键词:拟增生算子;φ-强增生算子;广义最速下降逼近;一致光滑实Banach空间;局部有界算子;充要条件
外文关键词:quasi-accretive operator; φ-strongly quasi-accretive operator; generalized steepest descent approximation; uniformly smooth real Banach space; locally bounded operator; necessary and sufficient condition
中文摘要:证明了广义最速下降逼近强收敛于定义在一致光滑实Banach空间的真子集匕的局部有界拟增生算子的零点的一充要条件,相关的结果处理含φ-强拟增生算子的非线性方程迭代解的收敛性.所得的结果推广和统一如Xu和Roach,Xu、Zhang和Roach,Chidume,Zegeye和Ntatin,徐宗本和蒋耀林,Chidume,Zhou等人的相应结果.
外文摘要:A necessary and sufficient condition is proved for a generalized steepest descent approximation to converge to the zeros of quasi-accretive locally bounded operators defined on proper subsets of uniformly smooth real Banach space. Related results deal with the strongly convergence of the scheme to a solution of equations involving φ-strongly quasiaccretive operators. These results extend and unify corresponding ones by Xu and Roach, Xu Zhongben and Jiang Yaolin, Chidume, Xu, Zhang and Roach, Zhou and others.
参考文献:
正在载入数据...