详细信息
非线性2+1维Khokhlov-Zabolotskaya方程的无穷多对称及其代数结构 被引量:1
INFINITELY MANY SYMMETRIES AND ALGEBRAIC STRUCTURE OF NONLINEAR 2+1 DIMENSIONAL KHOKHLOV-ZABOLOTSKAYA EQUATION
文献类型:期刊文献
中文题名:非线性2+1维Khokhlov-Zabolotskaya方程的无穷多对称及其代数结构
英文题名:INFINITELY MANY SYMMETRIES AND ALGEBRAIC STRUCTURE OF NONLINEAR 2+1 DIMENSIONAL KHOKHLOV-ZABOLOTSKAYA EQUATION
作者:俞军[1]
机构:[1]绍兴师范专科学校物理系
年份:1995
卷号:44
期号:5
起止页码:673
中文期刊名:物理学报
外文期刊名:Acta Physica Sinica
收录:CSTPCD、、北大核心1992、Scopus、CSCD2011_2012、北大核心、CSCD
语种:中文
中文关键词:非线性物理;KZ方程;对称性;李代数
中文摘要:对于2+1维的可积的Khokhlov-Zabolotskaya方程,利用形式级数对称的方法,得到了一包含无穷多任意时间函数的无穷多截断对称。由这些对称构成的无限维李代数是W_(?)代数的推广。
外文摘要:For the 2+1 dimensional integrable KZ equation'a set of infinitely many trun-cted symmetries with infinitely many arbitrary functions of time are obtained by using formal series symmetry method. The infinite dimensional Lie algebra consti-tute by these truncated symmetries is the generalization of the W∞ algebra.
参考文献:
正在载入数据...