详细信息
基于颗粒分形特征的土体渗透特性预测模型 ( EI收录)
Prediction model for soil permeability based on fractal characteristics of particles
文献类型:期刊文献
中文题名:基于颗粒分形特征的土体渗透特性预测模型
英文题名:Prediction model for soil permeability based on fractal characteristics of particles
作者:黄献文[1,2];姜朋明[1];周爱兆[1];王伟[3];唐楚轩[2,4]
机构:[1]苏州科技大学土木工程学院,江苏苏州215009;[2]新加坡国立大学工学院,新加坡119077;[3]绍兴文理学院土木工程学院,浙江绍兴312000;[4]中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北武汉430071
年份:2023
卷号:45
期号:9
起止页码:1907
中文期刊名:岩土工程学报
外文期刊名:Chinese Journal of Geotechnical Engineering
收录:CSTPCD、、EI(收录号:20233814742626)、Scopus、CSCD2023_2024、北大核心、CSCD、北大核心2020
基金:国家留学基金项目(202108340062);国家自然科学基金项目(52174104)。
语种:中文
中文关键词:渗透特性;孔隙尺度模拟;分形特性;蒙特卡洛算法;预测模型
外文关键词:permeability characteristic;pore scale simulation;fractal characteristic;Monte-Carlo method;prediction model
中文摘要:为预测土体渗透特性,基于其微观结构,提出了土颗粒分形特征识别算法与渗流孔隙通道重建算法,并将重建几何模型与传统有限元法联合,建立了土体渗透系数蒙特卡洛预测模型。首先,依据土体的微观结构特征,通过分形特征识别算法(FCIM)识别土壤中颗粒的椭圆度、粗糙度、级配、孔隙率以及长轴倾角;而后依据这些特征参数,采用渗流孔隙通道分形重建算法(FCRM)重塑土体微观结构模型;基于生成的微观结构模型,联合运用有限元法(FEM)与蒙特卡洛法(MC),获得具有统计意义的土体渗透系数。通过与试验结果对比,验证了预测模型的合理性(误差小于5%)。通过多因素分析,研究椭圆度、粗糙度、级配、孔隙率以及长轴倾角对土体渗透系数的影响,其大小关系依次为:级配>孔隙率>长轴倾角>椭圆度>粗糙度,皮尔逊相关系数分别为-0.3512,0.3065,-0.101,-0.042和-0.010;通过对渗流通道分析,发现级配和孔隙率主要影响渗流通道的“宽度”和“曲折度”;椭圆度、粗糙度和长轴倾角主要影响渗流通道绕行的“角度”和“长度”。
外文摘要:In order to predict the permeability characteristics of soils,a fractal recognition algorithm of soil particles and a seepage channel reconstruction algorithm are proposed based on the microstructure,and a Monte Carlo prediction model for permeability coefficient of soils is established by combining the geometric reconstruction model with the finite element method.Firstly,according to the microstructural characteristics of soils,the ellipticity,roughness,gradation,porosity and long-axis angle of soil particles are identified by the fractal characteristic identification method.Then,based on these characteristic parameters,the fractal channel reconstruction method is used to reconstruct the microstructural model.Based on the generated microstructure model,the finite element method and the Monte Carlo method are combined to calculate the permeability coefficient with statistical significance.Compared with the experimental results,the rationality of the prediction model is verified(the error is less than 5%).Through the multi-factor analysis,the influences of ellipticity,roughness,gradation,porosity and long-axis angle on permeability coefficient of soils are studied.The order of magnitude relationship is gradation>porosity>long-axis dip angle>ellipticity>roughness.The pearson correlation coefficients are-0.3512,0.3065,-0.101,-0.042 and-0.010,respectively.Through the analysis of the seepage channel,it is found that the"width"and"tortuosity"of the seepage channel are mainly affected by the gradation and porosity.The ovality,roughness and long axis dip angle mainly affect the"angle"and"length"of the seepage channel.
参考文献:
正在载入数据...