详细信息
文献类型:期刊文献
中文题名:基于压缩感知的高分辨频率估计
英文题名:High Resolution Frequency Estimation with Compressed Sensing
作者:刘兆霆[1,2];何劲[1];刘中[1]
机构:[1]南京理工大学电子工程系;[2]绍兴文理学院电子工程系
年份:2009
期号:8
起止页码:1252
中文期刊名:信号处理
外文期刊名:Signal Processing
收录:CSTPCD、、CSCD2011_2012、北大核心2008、北大核心、CSCD
语种:中文
中文关键词:压缩感知;分辨率;二次锥规化;稀疏分解
外文关键词:Compressed Sensing ; Resolution ; SOCP ; Sparse Representation
中文摘要:压缩感知是信号离散表示的新理论。本文将该表示理论用于正弦信号的频率估计,提出一种新的高分辨率的频率估计方法。该方法根据信号的稀疏表示,利用一个随机的压缩矩阵先对信号进行压缩,再在压缩域中通过对l_1模优化重构该稀疏信号,获得信号的频率估计。模拟分析了新方法性能,并与直接l_1模优化算法、Pisarenko、MUSIC等算法进行了比较。结果表明本文方法分辨性能明显优于Pisarenko和MUSIC等算法;具有直接l_1模优化算法相当的性能,但计算量大大降低。
外文摘要:Compressed sensing is a new theory of discrete signal representation. This paper applies the theory to the frequency estimation of sinusoidal waves contaminated in noise and develops a new high resolution method. The proposed method firstly compresses the signal with a random compressed matrix and then estimates the signal frequencies in the compressed domain by l1 -norm optimization. In comparison with related methods, the new method outperforms greatly Pisarenko and MUSIC methods and has the performance comparable to the direct l1-norm optimization method. However, the new method has the computational advantages because the fre quency estimation is conducted in the compressed domain.
参考文献:
正在载入数据...